Recognition of Isolated Handwritten Kannada Numerals based on Decision Fusion Approach

نویسنده

  • Sucharitha Srirangaprasad
چکیده

combining classifiers appears as a natural step forward when a critical mass of knowledge of single classifier models has been accumulated. Although there are many unanswered questions about matching classifiers to real-life problems, combining classifiers is rapidly growing and enjoying a lot of attention from pattern recognition and machine learning communities. For any pattern classification task, an increase in data size, number of classes, dimension of the feature space and interclass separability affect the performance of any classifier. It is essential to know the effect of the training dataset size on the recognition performance of a feature extraction method and classifier. In this paper, an attempt is made to measure the performance of the classifier by testing the classifier with two different datasets of different sizes. In practical classification applications, if the number of classes and multiple feature sets for pattern samples are given, a desirable recognition performance can be achieved by data fusion. A framework for feature selection and decision fusion has been proposed in this paper to increase the performance of classification. From the experimental results it is seen that there is an increase of 4.55% in the recognition accuracy. Keywordsfeature selection; decision fusion;Curvelet transform; K-NN classifier; data fusion; isolated handwritten Kannada numerals; OCR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data fusion based framework for the recognition of Isolated Handwritten Kannada Numerals

combining classifiers appears as a natural step forward when a critical mass of knowledge of single classifier models has been accumulated. Although there are many unanswered questions about matching classifiers to real-life problems, combining classifiers is rapidly growing and enjoying a lot of attention from pattern recognition and machine learning communities. For any pattern classification...

متن کامل

Classifier Fusion Method to Recognize Handwritten Kannada Numerals

Optical Character Recognition (OCR) is one of the important fields in image processing and pattern recognition domain. Handwritten character recognition has always been a challenging task. Only a little work can be traced towards the recognition of handwritten characters for the south Indian languages. Kannada is one such south Indian language which is also one of the official language of India...

متن کامل

Neural Network based Kannada Numerals Recognition System

This paper presents a novel approach for feature extraction in spatial domain to recognize segmented (isolated) Kannada numerals using artificial neural networks. Artificial neural systems represent the promising new generation of information processing networks to develop intelligent machines which can be used as classifier. The ability of neural networks to learn by ordinary experience, as we...

متن کامل

Offline Handwritten Kannada Numerals Recognition

Handwritten Character Recognition (HCR) is one of the essential aspect in academic and production fields. The recognition system can be either online or offline. There is a large scope for character recognition on hand written papers. India is a multilingual and multi script country, where eighteen official scripts are accepted and have over hundred regional languages. Recognition of unconstrai...

متن کامل

Multilevel Classifiers in Recognition of Handwritten Kannada Numerals

The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013